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SURG70004 Image Guided Intervention  
IGI Coursework 1  

Due date Wednesday 8th November 2023 (via Blackboard)  

  

During this exercise you will investigate the detection of edges, image filtering and segmentation of 

blood vessels on retinal images. The retinal image dataset used for this coursework is part of the DRIVE 

database [1] and it includes a retinal image (“Retinal Image.tif” file), its corresponding mask image 

delineating its FOV (“Mask Image.gif” file) and a ground truth segmentation map for the image 

(“Ground Truth.gif” file) as shown in the figure below. For the processing of the retinal image, only the 

part highlighted as white in the mask image needs to be considered.   

  

Figure: Images included in the dataset.  

The questions are provided in black font. Please use blue for your answers in the spaces indicated.  

  

Task 1 – Edge Detection (30%)  
  

(a) A binary image contains straight lines oriented horizontally, vertically, and diagonally at 45° and 

−45°. Give a set of 3x3 kernels which can be used to detect one pixel breaks in these lines. Assume 

that the lines are one pixel thick, they do not intersect and that the intensities of the pixels 

belonging to the lines and the background are 1 and 0, respectively. (max. 100 words)  

  

 
 

(a) The kernels shown below [Figure 1a] can be used to detect lines at various orientations: 

[
−1 0 1
−1 0 1
−1 0 1

]         [
−1 −1 −1
0 0 0
1 1 1

]           [
0 0 1

−1 0 1
−1 −1 0

]          [
1 0 0
1 0 −1
0 −1 −1

] 

                          Horizontal       Vertical           Diagonal at 45°    Diagonal at -45° 

Figure 1a: Four kernels which respond maximally to horizontal, vertical and diagonal at 45° and -45° 
single-pixel wide lines. 

 

 



 

(b) Use the Laplacian of Gaussian operator to detect the edges of the provided skin lesion image. 

Investigate how the size of the LOG kernel affects the edge detection result. (max. 100 words)  

 

 

 

(b) The edge detections using various kernel sizes are shown in [Figure 1b]. 

 

 
Figure 1b: Edge detection based on different sizes of LoG kernel. 

 

To summarise, a smaller kernel size heightens sensitivity to finer edges within the image (e.g. KZ = 

7). This sensitivity, however, may also intensify noise, resulting in a noisier edge map (KZ = 5). When 

the kernel size is too small concerning the σ value, severe truncation can occur (KZ =3). On the 

contrary, larger kernel sizes capture broader edges and are more robust to noise but might overlook 

finer image details. 

 

 

 

 

 

 

 

 

 

 



 

 

Task 2 – Image Filtering (40%) 
(a) Explain how the Fourier transform can be used to apply on a 2D image a high pass filter in the 

frequency domain. (max. 100 words)  

 
(a)   First step: Convert the 2D image to the frequency domain 

Fourier transform converts a function into an alternative representation. In this case, it converts 

the spatial information of the image into its frequency representation. 

Second step: Design and apply the high-pass filter 

Create a filter to eliminate low frequencies and let high frequencies pass to enhance it (e.g. the 

edge-detection filter). Then multiply the frequency spectrum by the high-pass filter. 

Third step: Inverse Fourier transform for reconstruction 

 Convert the modified spectrum back to the spatial domain of the image. 

 
  

(b) Consider a filter defined in the frequency domain by the function 𝐻(𝑢, 𝑣) which is zero at the 

centre of the (centred) transform and 1 elsewhere. Explain what effect this filtering process will 

have on the intensities of the image. (max. 100 words)   

 
 

(b) This filtering process performs as a high-pass filter, which enhances high-frequency components 

while reducing low-frequency details. It enhances edges, fine details, and texture, resulting in 

heightened contrast and sharper features.  

In summary, this filter will improve the overall sharpness and edge details of the image. 

 
  

(c) The Discrete Fourier Transform (DFT) is complex, and it can be expressed in polar form as:  

𝐹(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|𝑒𝑗𝜑(𝑢,𝑣)  

where, |𝐹(𝑢, 𝑣)| and 𝜑(𝑢, 𝑣) are the magnitude and phase, respectively.  

Prove mathematically that the DFT of a real 𝑓(𝑥, 𝑦), in which (𝑥, 𝑦) is replaced by (−𝑥, −𝑦), is 𝐹∗(𝑢, 

𝑣), the complex conjugate of the DFT of 𝑓(𝑥, 𝑦). This property is mathematically described as follows:  

𝑓(−𝑥, −𝑦) ⇔  𝐹∗(𝑢, 𝑣)  

where, the symbol ⇔ indicates a Fourier transform pair.  

 

 (c) The DFT expressed in polar form: 

𝐹(𝑢, 𝑣)  =  |𝐹(𝑢, 𝑣)|𝑒 𝑗𝜑(𝑢,𝑣), 

where |𝐹(𝑢, 𝑣)| is the modulus of the complex 

As a property of complex 𝑍, we can get: 

𝑍∗  =  
|𝑍|2

𝑍
 

Then, the complex conjugate of 𝐹(𝑢, 𝑣) is: 

𝐹∗(𝑢, 𝑣) =  
|𝐹(𝑢,𝑣)|2

𝐹(𝑢,𝑣)
= |𝐹(𝑢, 𝑣)|𝑒 −𝑗𝜑(𝑢,𝑣)                           Equation 1 



 

The common complex number and its modulus are given by: 

𝑍 = 𝑥 + 𝑦𝑖 =  𝑟𝑒 𝑖𝜃, 

𝑟 = |𝑥 + 𝑖𝑦| = √𝑥2 + 𝑦22 , 

where r is the modulus and x is the real part 

The modulus (or magnitudes) of 𝑍(−𝑥, −𝑦) and 𝑍(𝑥, 𝑦) are equivalent: 

𝑟 = √(−𝑥)2 + (−𝑦)22
= √𝑥2 + 𝑦22

 

Thus, for the modulus of DFT 

|𝐹(𝑢, 𝑣)| = |𝐹(−𝑢, −𝑣)| 

Considering 𝐹(−𝑢, − 𝑣): 

𝐹(−𝑢, − 𝑣)  =  |𝐹(−𝑢, − 𝑣)|𝑒 𝑗𝜑(−𝑢,−𝑣) 

= |𝐹(𝑢, 𝑣)|𝑒 𝑗𝜑(−𝑢,−𝑣) 

Now trying to prove 𝑒 𝑗𝜑(−𝑢,−𝑣) =  𝑒 −𝑗𝜑(𝑢,𝑣) 

The 2D DFT can be expressed as (from lecture notes): 

𝐹(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

𝑒 −2𝜋𝑗(
𝑢𝑥
𝑀 +

𝑣𝑦
𝑁 ) =

1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

𝑒 2𝜋𝑗(−
𝑢𝑥
𝑀 −

𝑣𝑦
𝑁 ) 

Thus, 𝜑(𝑢, 𝑣) is an odd function: 

𝜑(−𝑢, −𝑣) = −𝜑(𝑢, 𝑣) 

Now, considering 𝐹(−𝑢, − 𝑣) again: 

𝐹(−𝑢, − 𝑣) = |𝐹(𝑢, 𝑣)|𝑒 𝑗𝜑(−𝑢,−𝑣) 

                                                         = |𝐹(𝑢, 𝑣)|𝑒 −𝑗𝜑(𝑢,𝑣)                                 Equation 2 

Comparing Equation 1 and 2, which are 𝐹(−𝑢, − 𝑣) and 𝐹∗(𝑢, 𝑣): 

𝐹(−𝑢, − 𝑣) = 𝐹∗(𝑢, 𝑣) 

Using Fourier transform pair: 

𝑓(−𝑥, −𝑦) ⇔  𝐹(−𝑢, − 𝑣) 

Thus, we can get: 

𝑓(−𝑥, −𝑦) ⇔  𝐹∗(𝑢, 𝑣) 

 
  

(d) Consider a binary image which illustrates the digit “5” in the centre. If you compute the DFT of this 

image, multiply the phase of this transform by -1 and compute the inverse DFT, you will obtain a 

transformed image. Explain the effect of this operation on the original image and sketch the 

transformed image.   

 

 
 

(d)  The multiplication by -1 of the phase in the DFT essentially causes a 180-degree phase shift of the 

original image. The effect on the transformed image will be an alteration of its spatial structure 

without changing its overall magnitude or shape. 



 

The original and transformed images are displayed in [Figure 2d]. The transformed image is 

rotated 180 degrees from the original image. Due to the rotational symmetry of the digit '5', the 

transformed image retains the upside down '5' in the centre.  

 

     Original Image                   Transformed Image 

 
 

Figure 2d: Original and transformed images. 

 

  

(e) Corrupt the retinal image by Gaussian noise of zero mean and standard deviation of 0.1. Apply 

image smoothing using 2D convolution between the retinal image and a gaussian kernel of 

standard deviation 𝜎 = 1 and size [(2 ∗ 𝑐𝑒𝑖𝑙(2 ∗ 𝜎) + 1) × (2 ∗ 𝑐𝑒𝑖𝑙(2 ∗ 𝜎) + 1)]. Plot the 

smoothed image. Apply the same filtering process in the frequency domain. Explain the steps you 

followed. Plot the Fourier representation (magnitude) of the Gaussian filter and of the image. By 

presenting the result of filtering, show what is the effect of changing the value of 𝜎 on the 

smoothed image? (max. 100 words)  

  

 
 

(e)  [Figure 2e.1] shows the original, noised and smoothed image. The noised image is made by   

       applying Gaussian noise. 

 
Figure 2e.1: The original, noised and smoothed image. 

[Figure 2e.2] shows the Fourier representations respectively.  

 

First, the image is transformed from the time to frequency domain using Fourier Transform (FT). 

Gaussian noise is introduced in frequency domain. FT converts the Gaussian kernel to the 

frequency domain, simplifying convolution. Multiplication in frequency domain occurs between 

the transformed image and kernel. Finally, a logarithmic function enhances image visualisation, 

and Fourier representation is plotted. 



 

 
Figure 2e.2: The Fourier representations (in magnitudes). 

The smoothed images shown in [Figure 2e.3] are filtered with 𝜎 = 1,3,5,7. Larger σ values result in 

blurring and smoother image, while smaller σ values detect finer details and features. σ = 1 contains 

the most details, while σ = 7 is more blurry. 

 

 
Figure 2e.3: Smoothed image using various values of 𝜎. 

 

  



 

Task 3 – Image Segmentation (30%)  
(a) Apply threshold-based segmentation to identify blood vessels in the provided retinal image. Explain 

your threshold selection and investigate how the selection of the threshold affects the accuracy of 

the segmentation result. You need to compare your results to the provided ground truth 

segmentation map (max. 100 words).  

  

 
(a) [Figure 3a] shows the ground truth and segmentations with different thresholds (Thr).  

Numerous thresholds ranging from 0 to 1 have been chosen for the segmentation process. By 

comparing these segmented outputs to the ground truth, three specific thresholds have been 

selected to demonstrate their impact on accuracy. It is observed that a threshold value of 0.1 yields 

a more accurate segmentation result. 

 

High thresholds merge regions, losing information, while low ones induce over-segmentation, 

adding noise. Greater thresholds filter noise but risk losing details, whereas lower ones capture 

more detail yet include noise. Adaptive thresholds tailored to image specifics are crucial. 

 
Figure 3a: Threshold-based segmentation and accuracy. 

 



 

(b) Use ROC analysis to select the optimal threshold value for your segmentation and display the best 

segmentation map. (max. 100 words).   

  

(b) [Figure 3b.1] shows the ROC analysis. The Area Under the ROC Curve (AUC) has been determined                       

to be 0.7497. Through assessing the distances between the point (0,1) and various points along the 

curve, the minimum distance of 0.402 has been identified. This particular point, representing the 

minimum distance, has been highlighted on the graph, signifying the location of the optimal 

threshold. By leveraging the coordinated False Positive Rate (FPR) and True Positive Rate (TPR) 

values, the optimal threshold of 0.101 can be precisely identified. 

 

[Figure 3b.2] illustrates the best segmentation map with optimal threshold (0.101). 

                                   
Figure 3b.1: ROC Curve analysis and AUC value. 

 
Figure 3b.2: Best segmentation map. 
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